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1. Statement of the problem and derivation of its soltiioo. An in- 
finitely deep, ideal, heavy liquid fills the half-space z < 0. In the 
liquid is submerged a plane, semi-infinite, vertical wall, the edge of 
which coincides with the axis OZ. Under the surface of the liquid at 
several points characterized by the cylindrical coordinates (r’i a, - h) 

are located sources acting periodically with frequency tr and having 
maximum power Q. 

We study the diffraction of waves incident on the surface of the liquid. 
Considering the motion of the liquid to be potential, and bearing in 
mind its periodic character, we introduce the velocity potential q&r, 8, 

L) e i**. The function $(r, 8, Z) throughout the entire half-space, 
occupied by the liquid. should satisfy the Laplace equation 

Acp =.o (,I .I) 

the condition on the free surface of the liquid 

g aq 
q == -6s az for Z==O (1.2) 

and the conditions of the solid wall 

acp -- 
ag -0 for 0 =: 0 and (I = 2n (1.3) 

The motion should damp out with increase in depth of the place of 
observation; therefore 

cP(r, 0, z)-+ 0, for z-+ --oc (,I./0 

545 
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Fig. 1. 

Finally, at the point .s( r’i a, - h) the 
function #r, 8, z) should have a singularity 
of the form 

(1.5) 

Q 1 -- 
4% RI 

R12= r2 $ ~'2 - 2rr’ cos (0 - U) + (z - 2’)’ 

The problem consists of finding the solu- 
tion to the Laplace equation (1.1) which 
satisfies conditions (1.2) to (1.5). Bearing 
in mind the integral representation of the 
potential of a source in an infinite liquid 
domain 

$ .vRz+l( +-h)” = & e-*(*+“)JO(kR)dk (1.6) 
z \ 

0 

we snail seek a function +(r, 8, Z) in the form 

co 

cp(r, 0, z)= -$[r e-k(z+h)Yr(k, r, O)dkL+ ’ 
\ 

ekZA(k)Y (k, r, Q)dk] (1.7) 

0 6 

where the function A(k) is determined in such a way as to satisfy the 
boundary condition (1.2). setting $(r, 8, Z) in the form (1.7) in Ewa- 

tion (1.21, we obtain the following expression for the function A(k): 

1 +gk/‘aZ 
A(k)=-ee-kh 1__k,62 (I.81 

Thus, the function qb(r, 8, z) for - z < h can be put in the form 
co 

cp(r, 0, ~)=~[~e-*(~+~~)Y(k, r, e)dk-’ e-k(‘r-z) :I$;$ 
s 

Y (k. r, e)dk (1.9) 

; 0 

The function Y(k, T, 8) is found, following Sommerfeld 111, by con- 
structing the branched solutions of the Laplace equation. It was deter- 
mined by this method by Sretenskii in [ 2 1. 

The function ‘Pkk, r, 8) has the following form: 

I 
Jo (W + JO (k@ + P’ (0, rl 4 for o<e<n-a 

Y (k, r, 8) = 

\ 

JO (kR) +V(e, r, k) for n- c<e<n+a (1.W 

v(0, r, 4 for n+a<O<2n 
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1 co if (8, f, k) = --z s, I( e*lz(a-We%li + ,-%fa--W,-5fs-rij--1 + 
(1.11) 

+ (,*/~(a+-We-*/d 

R2 = r2;e; 
‘/r(af@)i;/sn)-l] Jo (,I&,) dq 

‘2 - 2rr’ co.3 (8 - 61) 

@ = ra + r’% - 2rr’ co.5 (0 + a) 

R,~=,~+,+z,,‘,~T, 
(1.12) 

To study the form of the disturbed surface of the liquid, we make use 
of the relation between the displacement of the free surface of the 
liquid and the velocity potential: 

(1.13) 

From this 

(1.141 

On the basis of Expression (1.10) for Wk, r, t?), the displacement 
the liquid surface may be put in the form 

f; = 5r+ 52 + c3 for 0<0<x-a A 

s” = t + 53 for x-a<0<nfa 

5 = 58 for n+a<$<2n 

Cl== znga ~ziQ-pei~t~exp (+)J,($R~)~ (1.16) 

of 

Co@% (a + 8)bh(1/zq) 
+ cm" ['/a (a + 0)Ed?Plzrl) + sin2 ['/~(a + B)lsinha(1/e7]) ]A($ R,S)@ (l.18) 

The term cl corresponds to the wave excited at the surface of the 
liquid, filling the half-space z < 0, when the source is at the point 
S(r*i ff* - h). The term <g corresponds to the wave excited by the source 
located at the image point s1 (r’i -’ a, - 

diffraction. 
h). Finally, C$ is the required 
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2. Asymptotic analysis of the solutfon.We seek the asymptotic formulas 
for the displacement of the liquid. We start with an analysis of lI. Re- 
placing the Bessel function by the half-sum of the Haenkel functions. we 
write the integral in Expression (1.16) in the form 

Assuming the dimensionless magnitude 02R/g to be large, we replace the 
integration along the real axis by an integration along the path OAB 
(Fig. 2) in the first term, and along the path OCB in the second term, 
where A5 and CB are arcs of a circle with infinitely large radius. 

In the original expression a pole Is located along the path of inte- 
gration at 6 = 1. 

We assume that the path of integration goes around this pole along a 
semi-circle of small radius lying in the upper half-plane. As is shown 
in the analysis below, the radiation condition is satisfied by such a 

choice of path of integration. In deforming the path of integration in 
the second term of Formula (2.1) it is necessary to include the contribu- 
tion near the point e= 1. Accomplishing the indicated deformation of 
the path of integration, and taking into account the contribution of the 
point 5 = 1, we transform Expression (2.1) in the form 

The integrals entering this expression may be asymptotically evaluated 
by use of the theorem proposed by Bretenskii in [ 3 I I + Carrying through 
the computation, we come to the conclusion that these 

l Let 

f(E)= i ,,,+ (I> 0) 
rn==l 

Then for large values of o the asymptotic expression is valid 
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integrals are of order (~~lf/g)-~, and therefore 

(2.3~ 

Thus, for large values of the parameter o?R/g, the part of the dis- 
placement due to cl may be put in the form 

Analogous considerations lead, for large values of the parameter 
o?R/g, to the wmptotic value of the quantity 

& = Qa9 eiaf ex 
22 

p ( - T) Hoc2' ($- R) + 0 (&I 1 g)-2 

(2.4) 

(2.5) 

We now pass to the asymptotic approximation of the quantity c3. For 
this purpose, we first determine the parameter with respect to which the 
asymptotic approximation is obtained, and consequently we also establish 
the region in which the asymptotic formula will be valid. 

We introduce the dimensionless parameters p, pli and p1 defined by 

r = PO, r’ = p’r,,, R = plro 

We assume that the quantity o= cr2rO/g is large enough for.only the 
first term in a series in negative powers of oto be significant in the 
asymptotic approximation. We also assume that the asymptotic formula will 
be sought for a position of the point of observation and of the source 
for which all the parameters p, p’ and p1 may be chosen greater than one. 

Reversing the order of integration in Expression (1.18). we obtain 

m p3 _ _ iQ# eiof {S[ cos l/a (a - e)cosh(‘/z ‘1) 
8nag2 _ Cd [‘I2 (a - 0 )bd (‘/a q) + sina [‘h (a -- f3)lSti2 (% q) 

+ 

+ cos l/2 (a + e)cosh(‘la q) 

~09 V/Z (a + e)l,,d P/Z ‘1) + sina I% (a + O)hnhz (l/2 q) 1 4 x 

(2.6) 

For the inner integral for large values of the quantity 02R,,/g (and, 
consequently, the more so for large values of 02rO/g) we have the asymp- 
totic approximstion 
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(2.7) 

Taking account only of the first term of the asymptotic series, we 
obtain the following expression for [g: 

X ash (‘la q) ff~(~) (o*h / g) dq 
ma P/2 (a - 8)lcosh2 P/2 q) + sin2 IV2 (a - O)bhz (l/2 q) + 

2 ?I2 rl) 
Gw 

--cTJ 

Let US consider one of the integrals of Formula (2.8). for example, 
the first: 

co 

Jl = ‘msh (l/2 q) fd2) b2Rs I d 
cOss IV2 (a- e)bd Ph q) + sina [% (a - ewwh d 

4 

Changing the variable of integration according to the formula 

we obtain 

coshq = 1 + p2 

(2.9) 

(2.10) 

Putting R7, in the form 

-I 

t 
R,,” = 2pp’r,, (2.11) 

i8 

and replacing the Haenkel function by the first -1 

term of its asymptotic representation 38 I + - 

the integral J, may be written in the form Fig. 3. 

LX 

(2pp7”4 F(P) e-WI” (PI@ 
s 
0 

(2.12) 

where 
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1 
F (P) = (*2 + 5”)~“’ coca [‘ia (a- fl)] (pa + 2) + 5’ sin2 [l/2 (a - O)] 

_ -- 
VJ (j3) = i J’-2ppj liba + Pa, b2 = (P + P’)a 

2pp” 
0 = c?!LE 

g 
(2.13) 

The asymptotic evaluation of the integral in Formula (2.12) may be 
obtained by the cross-over method. We will consider p a complex variable 
and determine the sign of the root x= \l(b2 + p2) when we introduce cuts 
from the branch points p= f ib to infinity parallel to the imaginary 
axis. We assume, also, that on the first sheet, where the integration is 
carried out, the distribution of signs of the roots is as indicated in 
Fig. 3. 

The cross-over point is located at the origin of coordinates, and the 
path (Fig. 4) along which the imaginary part of the function WC/?) re- 
mains constant as one moves away from the origin of coordinates, asymp- 
totically approaches the straight line Re B = b. We deform the original 
path of integration OA, and replace it by the path OBA, where BA is a 
circular arc of infinitely large radius. Furthermore, expanding the 
integrand into a series near the cross-over point 14 1 and applying for 
its evaluation the lemma of Poincar6 [4,5 1 , we obtain as the result of 
all these considerations the asymptotic approximation of the integral J, 
in the form 

Jl = j$ g+. $$ exp [- i ‘lro(Pg+ “)J cos2 Ll,2 ‘(a _ e)l + 0 f$)-* (2.14) 

The evaluation of the second integral in Formula (2.8) is carried out 
in an analogous manner. As a result, for the term c3 of the displacement 
of the liquid [ we obtain 

+-L2&-d (2;) x 

.2np ng 1/z exp 

X exp 
( [ 
iG t _ 0 (r -I- ?‘I cos P/2 a) cos P/2 0) 

g J1 cos P/2 (a - 0)l cos V/2 (a + O)l 
(2.15) 

For a or 6 equal to R, the elevation 53 = 0. This means (in the pre- 
viously indicated approximation) that if the source or point of observa- 
tion is in the half-plane relative to which diffraction occurs the term 
c3 vanishes. The phase of the diffracted wave is determined by the total 
distance from the origin of the point of observation and of the source, 
and the damping in amplitude by the square root of the product of these 
distances. It should be noticed that for angles 8 close to R - a and 
R + a the asymptotic expression (2.15) loses its meaning. 

In conclusion, we note that a similar method may be used for the solu- 
tion of the problem of waves initiated at the surface of a liquid by an 
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oscillating body located near a wall immersed in the liquid. For this. 
one should use the method of N.E. Kochin, which replaces the oscillating 

body by a distribution of sources and sinks. 

The author also solved the problem of waves 

0 b on a surface of separation, when the source is 
located near a solid wall immersed in a half- 
space of fluid which consists of a homogeneous 
liquid, with another liquid of different 
density floating above it. Omitting here the 
rather cumbersome calculations, we present one 
of the formulas Obtained. If the Plane z = 0 
is the undisturbed boundary of separation, if 
the layer has a thickness h. and the depth of 
the immersed source beneath the surface of 

Fig. 4. separation is If. the portion of the displace- 
ment of the free surface <,, caused by diffrac- 

tion is obtained in the following form: 

QQ cos ( V2 a) cos (VP 0 ) eiot 
b = - 2n J&&,7 cos [l/e (a - e)] COS[‘/z(~ + 6)l i 

exp (- a2N j g) exp [- i (f + P’) a3 / g] 

cosb (a% / g) - (1 - 2a)sinh(a% / g) + 

exp[-_(02H/g)Eolexp[-~(02/g)~o(~+~’)l I_ 
+& ~F;~-l)(1-[(1-~)~~-ua]~ - (g / a24 (1 - o)l8iph[(oQ / g) Eol \ J& 

Here a = pi/p is the ratio of the density of the layer to the density 
of the liquid within the half-space below, and co is the root of the 
transcendental equation 
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